SFAL

Sl. No.:	1	0	0	0	0	1	2	5
----------	---	---	---	---	---	---	---	---

•		 7T	TA	4.	/ 1	
Register Number						
· ·						

2017

MEDICAL PHYSICS (P.G. Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

ADMD/17

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 10 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

(A) (□) (D)

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination.

 After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Do not tick-mark or mark the answers in the Question Booklet.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

1.	Devel	loping solution contain
	(A)	hydroquinone
		hydroquinone and phenidone
	(C)	sodium sulfite
	(D)	sodium metaborate and sodium tetraborate

- 2. Characteristic curve or H & D curve is a curve between
 - the exposure and density
 - (B) the MAS and film density
 - (C) kV_p and film density
 - (D) kV_n and MAS
- 3. Film contrast does not depend on
 - (A) Film density
 - (B) Characteristic curve of the film
 - (C) X-ray exposure
 - Patient thickness
- 4. Which algorithm is not used for image reconstruction in CT scanners?
 - (A) Back projection
 - Collapsed cone
 - (C) Analytics methods
 - (D) Iterative methods
- 5. Which of the below combination regards CT scanners is true?
 - (A) First generation Rotate Translate
 - (B) Second generation Rotate Fixed
 - Third generation Rotate Rotate
 - (D) Fourth generation Fixed Rotate Translate

	6. .	Whic	h is not true about Modulation Transfer Function (MTF)?
	4	(A)	Focal spor MTF deteriorates as the magnification factor increases
		(B)	Screen MTF improves with magnification
		(C)	MTF is 1.0 for films which image 10 to 20 lines per mm
		P	MTF of the system includes noise
			en de la composition de la composition La composition de la
	7	In to	nography, the section thickness is
•		4	inversely proportional to the amplitude of tube travel
		(B)	directly proportional to the amplitude of tube travel
	•	(C)	directly proportional to the kV _p
	•	(D)	changes rapidly with large tomographic arcs
		(-)	ensurges repress with large comographic ares
	8.	What	is true about zonography?
		(A)	less section thickness
		(B) ·	long exposure time
		VOY	very little unsharpness
		(D)	considerable unsharpness
•		•	
	9.	The p	hotoconductive layer in xero radiography plate is
	4	(A)	Selenium crystals
٠		(D)	Amorphous selenium
		(C)	Aluminium oxide
		(D)	Caesium iodide
	10.	Whicl increa	n does not change as the distance from the face of a parallel – hole collimator is ased?
		(A)	Resolution (B) Sensitivity
	•	(C)	Energy Patient dose
	<u>.</u>	_	
	11.	1 to 1 to 1	ng of thyroid yields the highest resolution with a
		(A)	High sensitivity collimator (B) Diverging collimator
	*	(C)	High - energy collimator Pinhole collimator
	A DRA	D/17	
	APM	LT/17	lack lac

12.	Whic	ch of the following is not a quality	control test	performed on a gamma camera?
	(A)	Field uniformity		99 Mo break through
	(C)	Extrinsic flood	(D)	Spatial resolution
13.	The	resolution of gamma camera does	not depend	on:
	(A)	Photon energy	(B)	Septal thickness
	(C)	NaI crystal thickness		Counting time
14.	An io	leal radio pharmaceutical would h	ave all the	following EXCEPT
	V(I)	Long half life	(B)	No particulate emissions
	(C)	Target specificity	(D)	150 to 250 keV photons
15.	Whic	ch of the following is not a radio ph	armaceutio	cal localization mechanism?
	(A)	Diffusion	(B)	Phagocytosis
	(C)	Capillary blockage	(20)	Elution
16.	What	t determines the residual activity o	of a 1 – wee	ek old 99 mo/99m TC generator?
	4	Initial activity of molybdenum	,	
	(B)	Number of times one generator v	vas milked	
	(C)	Half life of 99 m TC		
	(D)	Thickness of PB shielding		
17.	99 m	TC generators cannot be		•
	00 M	produced in a cyclotron		
	(B)	used to dispense more than IC	•	
•		shipped by air		
	(C) (D)	purchased by licensed users		
	(1)	purchased by ficensed users	·	
←			5	APM

18.	In an ultrasound scanning the "acoustic enhancement" is caused by							
	(A)	Solid lesion						
	(P)	Cystic lesion						
	(C)	Fibroid condition						
	(D)	Respiratory movement						
		•						
19.	What	is a TGC in a scan machine?		•				
	(A)	Trigger Gain Control						
	(B)	Transducer Gain Control		·				
	400	Time Gain Compensator	•					
	(D)	Trigger Gain Compensator						
20.	Poter	ntial applied to a piezoelectric crystal	to prod	uce sound				
	(A)	1000 – 2000 V	O Prod	300 – 700 V				
	(C)	10,000 – 20,000 V	(D)	1 meV – 2 meV				
			` ,					
21.	Aviol	resolution in an ultrasound scan is g	rirran hr	•				
21.	Axiai	Pulse length / 2						
	(C)	-	(B)	Pulse length × 2				
	(C)	Pulse length / 4	(D)	Pulse length alone				
00	m c							
22.		a factor in ultrasound is related to		,				
	(A)	Velocity response of crystal						
,	(C)	Frequency response of crystal						
	(C)	Pulse echo time of crystal						
	(D)	Time response of crystal						
23.	The a	advantage of colour doppler displays o	compare	ed to spectral displays include				
	(A)	simple interpretation						
	D	accurate recording of velocity		. ,				
	(C)	higher temporal resolution		•				
	(D)	fewer artifacts						
A TOBA	TD/17		^					

	_					
24.		The mode of operation	which presents	the most information	in ultrasound	scan is

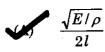
(A) A – mode

(B) B - mode

.(0)

Duplex mode

(D) M - mode


25. The most commonly employed range of frequencies for diagnosis are

1-20 MHz

(B) 2 - 20,000 Hz

(C) 2-10 Hz

- (D) 5-6 MHz
- 26. Natural frequency of an ultrasonic crystal is given

(B) $2l\sqrt{E\rho}$

(C) $\sqrt{2lE\rho}$

(D) $\sqrt{\frac{E}{2l\rho}}$

27. The relationship between speed (c), wavelength (λ) and frequency (f) for sound waves is given by

(A) $c = \frac{\lambda}{f}$

(B) $\cdot f = \frac{\lambda}{c}$

(C) $f = \lambda c$

 $C = \lambda$

- (A) Latent temperature
- (B) Threshold temperature
- Curie temperature
- (D) Specific temperature

(A) Blood

Bone

(C) Fat

(D) Muscle

(A) Fat

(B) Muscle

(C) Blood

Bone B

7

31.	Which class laser will not damage the eye if it directly viewed for short period of time?									
	JAN .	Class 2b lasers	(B)	Class 3a lasers						
	(C)	Class 3b lasers	(D)	Class 4 lasers						
32.	The	spot size of laser used for lase	r Iridotomy is							
	(A)	40 μm	(0)	50 μm						
	(C)	100 μm	(D)	80 μm						
33.	Tisst	ue optical properties is measur	red using							
	(A)	Photo luminescence		Integrated sphere						
	(C)	UV visible spectrometer	(D)	FTIR						
34.	Wha	t is Radiance?								
	(A)	(A) Power emitted from energy source								
	(B)	(B) Power emitted from source per unit solid angle								
	(C) Power emitted per unit area of the source									
	D	Power emitted from source p	oer unit solid ar	ngle per unit area						
35.	If the	e frequency of wave not equal d as	and the natura	l frequency of free vibration of particle it is						
	(A)	Resonance	(B)	Interference						
ı	The same of the sa	Scattering	(D)	Reflection						
36.	Laml	bert's law describes the loss in	intensity due (xo .						
	(A)	Scattering	(B)	Reflection						
	(C)	Total attenuation		Absorption						
37.	In tis	ssue – optics the energy densit	y is measured i	n units						
	(A)	W/cm ²	(P)	J/cm ²						
	(C) .	J/cm ³	(D)	J/ cm						

APMP/17

	(A)	CO_2 and Nitrogen	(B)	CO_2 and Helium	
	VE	CO ₂ Nitrogen and Helium	(D)	CO ₂ , Argon and Helium	
				•	
3 9 .	Wha	t is LIF?			•
		Laser Induced Fluorescence			
•	(B)	Light Intrinsic Fluorescence			
	(C)	Laser Impedance Fluorescence		•	
	(D)	Laser Inscripted Flopsy			•
4 0.	Whic	ch point is taken as reference point i	n ECG m	easurement?	
	THE PARTY OF THE P	Right leg	(B)	Left leg	
	(C)	Right arm	(D)	Left arm	
		•	•		
41.	Proto	on density weighted image is achieve	ed using		*.
	4	long T _R and short J _E	(B)	long T_R and long J_E	
	(C)	short T_R and short J_E	(D)	short T_R and long J_E	•
					•
12 .	What	t is the principle of coulter blood cell	counter	?	
	(A)	changes in optical property			
	(B)	changes in velocity			
	101	changes in electrical property			
	(D)	changes in chemical property			
1 3.	In in	version recovery pulse sequence, wh	at is the	inversion time TI?	
	(A)	The time duration of the application	on of 180	° RF pulse	
	0	The time delay between 180° RF p	ulse and	90° RF pulse	
	(C)	The time duration between two su	ccessive	180° RF pulse	
	(D)	The time delay between 180° RF p	ulse and	receiving the echo	
(•	9		APMP/17
				•	[Turn over

38. What are the gases used in CO₂ laser?

44 .	The	normal pH of blood is							
	(A)	7	(T)	7.4					
	(C)	7.8	(D)	6.6					
45.	In a	proton-density image which one o	f the follow	ing will annear bright					
	4	free water	(B)	air space					
	(C)	soft tissue	(D)	fat	,				
			,						
46.	To p	roduce magnetic resonance in MR	I, it is neces	ssary	•				
•	(A)	to apply RF pulse of frequence direction	y equal to	Larnov frequency in the magnetic	field				
	(B)	To apply RF pulse of any frequency in the magnetic field direction							
	VC)	To apply RF pulse of frequency equal to Larnov frequency in a direction perpendicular to magnetic field							
	(D)	To apply RF pulse of any freque	ncy in a dir	ection perpendicular to magnetic field	l				
47.	What	t is the range of normal EEG frequ	uency?						
	(A)	50 Hz to 100 Hz	, (B)	100 Hz to 150 Hz					
	مرس	0.5 Hz to 50 Hz	(D)	0.1 Hz to 20 Hz					
		•							
48.	QRS	complex in ECG represents		•					
	(A)	contraction of atria							
	D	ventricular contraction							
	(C)	atrial relaxation							
	(D)	ventricular relaxation			•				
				•					

49. In MRI, what is the function of shim coils?

To increase the homogeneity of magnetic field

- (B) To decrease the homogeneity of magnetic field
- (C) To produce gradient magnetic field
- (D) To produce fringe field

- 5 Division of somatic cells is called as
 - (A) synthesis

mitosis

- (C) apoptosis
- (D) meiosis
- 51. What is the current method used for the enrichment of palladium 103?
 - (A) gas centrifuge enrichment
 - (B) laser isotope separation
 - calutron method of enrichment
 - (D) activation in a reactor
- 52. Name the isotope which requires more encapsulation thickness for filtration
 - (A) Cobalt 60
 - (B) Gold 198
 - (C) Iodine 125

- 53. In the β -decay of Cobalt 60 to Nickel 60 (excited state), the number of β -rays emitted are
 - (A) 3

- (C) 4
- (D) 6

 \leftarrow

54.	The treat	distance between the plane ment distance of usually	of the sources	s to one skin surface	is chosen to g a
	(A)	0.1 to 0.10 cm	(B)	0.05 to 0.1 cm	
	(6)	0.5 to 1.0 cm	(D)	0.5 to 0.6 cm	
					Ì
55.	Expo	sure rate constant for radium	filtered by 0.5	mm platinum is	
	(A)	$8.4 R - cm^2/h/mg$	(B)	$3.26 R - cm^2/h/mg$	•
		$8.25 \text{ R} - \text{cm}^2/\text{h/mg}$	(D)	$4.69 R - cm^2/h/mg$	
56.	Whic brack	h of the following is no nytherapy?	t used as a	Beta-emitting source	for intravascular
	(A)	Yittrium – 90	⟨ ∕ P°	Strontium – 90	
	(C)	${\bf Phosphorus-32}$	100	Ruthenium – 106	, ,
				• .	
57.		Half Value Thickness (HVT) for	or a cobalt-60 s	ource is	
	(A)	11 mm Cu	(P)	11 mm Pb	
	(C)	11 mm W	(D)	11 mm H ₂ O	
58.	The e	effects of attenuation and sca e is accounted by	tter in water o	n the transverse plane	of a brachytherapy
	(A)	Geometry function	(B)	Anisotropy function	
	(0)	Radial dose function	(D)	Exposure rate constar	nt
59.	· Air ke	erma strength is defined as th	,		
	(A)	Air kerma rate	(B)	Dose rate	•
	(C)	Apparent activity	(D)	Activity	
	` .	••	(D)	110011109	
60.	For w 1 Gra	which of the following radiation	on, with energie	es between 1 keV and 1	100 keV, 1 sievert =
	(A)	Alpha particles	(B)	Neutrons	
•	(C)	Protons		lpha and Gamma rays	
API	MP/17		12		←
					•

61.		cron-Positron annihilation is thons each of 0.511 meV ejected i	. –	ocess of pair p	production, giving r	ise to two
	(A)	the same side				
	(B)	the perpendicular direction to	o each other			
	0	the opposite side			•	
	(D)	the diagonal direction			• •	•
			. •	•		
				*. •		
62 .		ch of the following does not emi				
**	(A)	Thermo luminescent dosimet	er		•	
		Photo cathode	,			
	(C)	NaI scintillation crystals	•	•		•
•	(D)	CR imaging plates				4
	, 1			•		
63.	The i	reason for high subject contrast	t on < barium	enema examii	nation is due to	
00.	(A)	Coherent scatter	(B)	Compton sca		
	((2)	Photo electric effect	(D)	Pair product		·
		i noto cicotti ontoo	(-)	Podenson		
64.		energy (E) and atomic num oximately as			e photoelectric eff	ect varies
		Z^3/E^3	(B)	E^3/Z^3	•	
	(C)	Z/E	(D)	$Z^3 imes E^3$		
٠						
65 .	Expo	sure is defined as				
-	(A)	Absorbed radiation energy pe		f air in electro	nic equilibrium	
	(B)	Average electrons liberated i				
	(C)	The total kinetic energy of io				
		The total charge of ions of on	e sign liberate	ed by photons	per unit mass in air	•
			•			•
cc	Whi	ch of the following match-up co	ncorning radi	etion unit is fa	ilse?	
66.				auton anno 10 10		
•	(A)			•		
	(B)	•	, •			•
	(C)	Exposure – Roentger				
		KERMA – Curie	٠.			•
•						

67.	Rega	arding Compton scatter, all correct exc	ept	
	(A)	Energy of photon is reduced gradua	lly	
	0	90° scattered photon has a higher en	nergy t	han 60° scattered photon
	(C)	Direction of scattered photons deper		
	(D)	The energy of scattered photons dep		
-				
68.	Whic	ch radio nuclide is not used in telether	apy ma	achine?
	(A)	Radium – 226	(B)	Cesium – 137
	9	Iridium – 192	(D)	Cobalt – 60
	•			
69.		transmission of a cobalt -60 beam thre	ough a	5.5 cm thick lead block is about:
	(A)	25%	(B)	10%
	. (C)	7.5%	(P)	3.1%
	****			*
70.		ch of the following does not accelerate	electro:	•
	(A)	Microtron	(3)	Cyclotron
	(C)	Betatron	(D)	Vande Graaf generator
- -	****			
71.	Wha	t is the diameter range of Co-60 sour	ce?	
	(A)	1 to 2 cm	(B)	1 to 2 mm
	(C)	2 to 3 cm	(D)	2 to 3 mm
			-	
70	****			
72.	wha inter	t is the average leakage of a telethera; mational regulations?	py mac	hine head at 1 m from the source as per the
		< 2 mR/hr	(B)	< 2 mR/min
•	(C)	< 1 mR/hr	` '	< 1 mR/min
	(0)	I MILWIII	(D)	
73.	Wha	t is the frequency of microwave region	nged i	n accelerator?
- *	(A)	~ 3000 kilo cycles/sec	(B)	•
	(C)	~ 3000 mega cycles/sec		~ 3000 mega cycles/min

67.

74.	What	t is the energy used in cyber knife?	
	(A)	4 mV , 6 mV	
	(C)	4 meV (D) 6 meV	
	•		
75 .	Whic	ch one is the microwave amplifier?	
		Klystron	
	(B)	Van De Graaft generator	
	(C)	Betatron	
	(D)	Microtron	
76.	Whio	ch radioactive isotope used for the high energy Beta emitter for Targeted Radiotherapy	u7
10.	Wille	Y-90 (B) Cu-67	7 •
	(C)	Rh-105 (D) Tb-161	
	(0)	(D) 10 101	
٠,,			
77.	The i	imaging modality that is not part of Image Guided Radiation Therapy (IGRT) is	
	(A)	Kilo voltage cone beam computed tomography	
	(B)	Mega voltage cone beam computed tomography	
		Single-photon emission computed tomography	
	(D)	Helical mega voltage computer tomography	
	•		
78.	The r	number of ⁶⁰ Co sources available in a gamma knife radiosurgical device is:	
•	(A)	181 201	
·. ·	(C)	221 (D) 101	
	,		
			٠.
79.	The (Collimator scatter (or Head scatter) factor (Sc)	
	(A)	is independent of SSD	
	(B)	decreases as the field is reduced by inserting secondary block	
	(C)	increases with increase in the collimator defines field size	
		both (A) and (C)	
←		15 APMP/1	. 7

		· .			:	;				_	
80.		ninimum value o nood cancer is	in–utero	exposure	which	increase	s the pro	bability	or inci	idence	of
1	(1)	10 mg	•		(B)	10 cg		•		•	
	(C)	10 g			(D)	1 mg				-	
										Ť,	
					ġ.		•		• •		-
81.	Whic	h of the following	statement	is true?		•					
	(A)	for the same dose	, lower do	se rate pro	duces	more cell	killing	. :		•	
	(B)	fractionation res	ults in wor	st therape	utic ra	atio	•		•		
	C	for the same dos	e, higher d	ose rate pr	oduce	s more cel	ll killing		•		
	(D)	dose rate is not i	mportant v	when same	radia	tion dose	is deliver	ed			
•		•									
	•	•									•
82.	The 4	R's of radiobiology					•	7			
	(A)	Radio sensitivity	, reconstru	iction, redi	stribu	tion and i	eoxygera	tion			
	(B)	Radio sensitivity	, repair, re	population	and:	reoxygera	tion		•		
	(C)	Radio resistant,					ration			÷	
•	(0)	Repair, reassort	nent, repo	pulation, r	eoxyg	eration			•		
		•									
		•						-			
83.	$TD_{5/5}$	means					•				
	(4)	the minimum to radiation comple		se that ca	uses	a 5% com	plication	rate w	ithin 5	years	of
	(B)	the maximum to radiation comple		ose that ca	auses	a 5% com	plication	rate w	ithin 5	years	of
	(C)	the total dose th	at causes {	% death o	f popu	lation in 8	years				
٠	(D)	the time delay fo	r the 5% o	f the cell p	opula	tion to du	plicate in	5 years			
								٠			
		÷ .					·		r,		
84.	Chen	nical <mark>agents that</mark> g	enerally p	romote bot	h the	direct and	l indirect	effects o	of radia	tion is	
	(A)	Radio activators	•		-				•		
	(B)	Radio resistants		•			•				
	(C)	Radio protectors	·	•						• .	
•	(T)	Radio sensitizer	3		٠	•					
AP	MP/17			16	i					. •	(
		,			ē	-					

	. (IV)	Increases blood	d flow to norm	al cells	9 .	ř		•	
·		•							
	(A)	I, II and IV							
	D	I, III and IV				•	1		
	(C)	I, II, and III							
	(D)	All are correct	t ·	-		•		•	
		•							
				,			•		
36.	RBE	depends on					•		
	(I)	LET				,			
	(II)	Dose rate					• .	•	
-	(III)	Biological sys	tem / end poin	t		•			
	(IV)	Chemical cha	nges					•	
	_		*			•			
	(1)	I, II and III	•	•	•			•	
	(B)	I and IV only	•					•	
	(C)	I and II only					٠		
	(D)	I and III only						•	
37 .	Mate	ch the radiation	types with OI	ER:			•	·	
	(a)	X rays and γ -	ravs	1.	1.3 (OER)				
	(b)	Neutrons	, -	2.	2 – 3.5 (OER)				
	(c)	High LET radi	ates (X rays)	3.	1.5 (OER)	• •	•		
•		•						•	
	_	(a) (b)	(c)						
		2 3	1			: :	•		
	(B)	2 1	3		•				
	(C)	1 2	3						
	(D)	3 2	1						
-				. •	17			APMP/17	ŗ
•				•				[Turn over	

Which of the following is true about hyperthermic treatment?

Hyperthermic doses are expressing in minutes at STP

(III) All the body tissues do not respond in the same way to heat

(I) It uses heat to kill cells

(II)

88.	The	OER for alpha particle is eq	ual to			•		•
	4)	1		(B)	1.6			
	(C)	2.5		(D)	3.0			
•								
	,		• •				•	
89.	Whi	ch is a unit of radiation expo	sure?					
	(A)	Joule		(B)	Rad			•
	(C)	REM		1	C/Kg			
							·	
90.	The	equipment that measures th	e electrical	activ	ity of th	e heart	is	
	(A)	Electromyography			•			
,	(B)	Electro encephalography				. •		-
	(0)	Electro cardiography			•		-	
	(D)	Electron microscope	•	-				
				.•				
			•		· .			
91.	Othe	r than hydrogen which one o	of the follow:	ing n	ucleus i	s prefer	red for	MRI
•	4	C^{13}		(B)	C^{14}			
	(C)	C^{12}		(D)	\mathbf{C}^{10}	٠		
				• /	- .		•	
	,					•		
92.	Whic	h of the radio nuclides prese	nt in the hu	man	hody?			
	(A)	H-3 and C-14	,		couy.			
,	(B)	Ce-144 and C-14			•			
	40	K-40 and C-14					• .	
	(D)	K-40 and Ba-140						
				,	,			
•								
93.	The l	inear attenuation coefficient	is defined s	AS				
	(A)	increase the radiation inter	,		th lengt	:h	,	
	O	reduction the radiation into						
			J I	I.,		>		

(C)

(D)

reduction the radiation amount in the atom

increase the radiation amount in the atom

- 94. What does a collimator do?
 - (A) It reduces the exposure time by ionizing the radiation before it hit the patient
 - (B) Holds the patient in place during an exposure
 - It provides particular shape to the area to be exposed (treated)
 - (D) It is used to produce radiation
- 95. ALARA stands for
 - (A) As Low As Responsibly Acceptable
 - (B) Alarm Loss Activated Radiation Activated
 - As Low As Reasonably Achievable
 - (D) As Low As Reasonably Attenuated
- 96. The factor that indicate how much attenuation will take place per centimeter is known as the
 - (A) mass attenuation coefficient
 - linear attenuation coefficient
 - (C) decay rate
 - (D) atomic number
- 97. The abbreviation for QF of radiation is
 - (A) quantity factor of radiation
 - quality factor of radiation
 - (C) quantity fusion
 - (D) quantity fashion
- 98. A skin dose from a beta emitter is considered more hazardous then that from a Gamma emitter. Which of the following best support this statement?
 - (A) Betas not significantly attenuated by skin and thus cause more damage
 - (B) Gammas are significantly attenuated by skin and thus cause more damage
 - All the beta's energy is dissipated in the basal layers of the skin
 - (D) All the Gamma's energy is dissipated in the basal layers of the skin

99.	in ai	lagnostic radiology, which type of intera	ction (delivers	the maxi	mum	dose to the	e patient
	(A)	Compton scattering	(3)	Photo	electric e	fect		
	(C)	Coherent scattering	(D)	Photo	disintegra	ation		
-					•		• •	:
100.	Whice perso	ch interaction produces radiation tha onnel during diagnostic investigations?	at are	more	harmful	for d	liagnostic	radiology
	100	Compton interaction	(B)	Pair p	roduction			•
	(C)	Photo electric effect	(D)	Cohere	ent scatte	ring		
101.	Name radio	te the factor that can be used to some	extent	t to con	trol scatt	er rad	liation in	diagnostic
	(A)	Field size	•					
	(B)	MAS						
	(C)	Thickness of the part to be radiograph	ned					•
	0	Kilo Voltage (kV _P)						
			٠					
102.	Which	ch of the following is correct?			:	į		
102.	(A)	1.5 mm Aluminium _		50 1 1 1				
• .				e 70 kV	• .			
	(B)	Copper _			iltration		T.	• ,
	(C)	Molybdenum _	pedia	tric ap	plication			
		Heavy metal filter (Holmium) -	impr	oved io	line or ba	rium (contrast	
103.	Grid	ratio is				:	• -	
	(A)	the ratio between the height and widt	h of th	e lead	strips		•	
	(B)	the ratio between the height of the strips				stance	e between	the lead
	(C)	the ratio of the height to the no. of lead	d strip	os	•			
	(D)	the ratio of the width to the number of	f lead	strips				
			•					
104.	Meth	od to increase screen speed					•	•
	(A)	thinner phosphor layer	٠			. "	* · · ·	
,		thicker phosphor layer			e e	• .		z •
,	(C)	lower absorption phosphor						
	(D)	average conversion efficiency				!		•
	ι-,							

20

APMP/17

105.	Whic	h of the	e follow	ing is no	t true a	about	inherent	filtration?	ı			•	
*	(A)			ed in alu									
	B							m for inhe	rent fil	tration			
	(C)							herent filt			•		
	(D)				•			am for inh		ltration			
	(D)	1110 6	,1000 011	, voispo v							•		
	-												
106.		t is th ntage?	ie thic	kness of	f the a	alumir	nium filt	er above	which	there is	no	appred	ciable
	(A)	1.5 m	ım Al	·	•		(B)	2.5 mm	Al				•
	0	3.0 m	m Al				(D)	2.0 mm	Al				
								4					
							9	•	,				
107.				bout qua					sattla	. •			
	(A)	. :						uantum n		•			
	(D)							quantum	топте			•	
	(C)	great	er with	high k\	P X ray	y phot	ons			•			-
	(D)	assoc	iated/s	een with	intensi	ifying	screen						
	j	٠	•		i i								
100	Mada	.Li+h	the en	propriate	a ontion	ıa.	•						
108.	Maio										•		
	(a)			sharpne		1.		or oval ob					
	(b)			nsharpn		2.		focal spor	•		•		
	(c)			harpness	3	3.	_	liffusion e emulsion	films	•			
	(d)	Scree	n unsha	arpness		4.	Donore	emuision	шшв				.•
		(a)	(b)	(c)	(d)						-		
:		2	1	4	3			*					
. *	(B)	2	1	3	4						•	1	•
	(C)	2 .	3	4	1			•		•			
	(D)	4	3 .	1	2			**				•	
					*.								
109.		ch conc ge clari		ovides a	n objec	tive m	ieasurem	ent of the	combi	ned effect	s th	at affe	ct the
				Spread F	unction	`			•	,			,
	(A)	P		lation T	1		ion)	,					
••	V		• .		anotti	_ uncl	.1011)						
	(C)	•	ner spec						•		•		
	(D) ·	_ Qua	ntum m	ottie			-						

	(C)	0.3 IP/mm	(D)	1.01 IP/mm
111.		CT requires all of the following EXCEP	\mathbf{T}	
	(A)	Gamma emitting, radio isotopes		
	(B)	Gamma camera rotation		
	101	Coincidence detection		
	(D)	Pulse height analysis	•	
112.	РЕТ	Scanners detect		
110.	(A)	positrons of the same energy in coinc	:	
	(B)	positrons and electrons in coincidence		
	(C)			•
	. (0)	photons of different energies in coinci	aence	
	,	annihilation photons in coincidence		
113.	ргт	Scanners		
110.	(A)	need high energy parallel hole collimate	. 4	
	(B)	cannot handle very high count rates	awrs	
	(C)	suffer from significant attenuation lo		
		detect 0.511 meV photons	sses	
	(deweet o.b.11 mev photons		
114.		pest radio nuclide spatial resolution is a	normal	ly achieved using
	(A)	SPECT		•
	(B)	Low energy all purpose collimator		
-	. (C)	High resolution collimator		
		PET,	•	
			٠	
115.	Adva	ntage of PET over gamma cameras incl	lude al	l of the following EXCEPT
	(A)	More physiological traces compounds		
	(B)	Better resolution		
	(C)	Less mottle		
	0	Availability of positron radio isotopes		•
A TOP	ED/17		* .	
ALIV	IP/17	22		•

Gamma cameras are normally capable of re-solving

0.06 IP/mm

110.

(A) 0.01 IP/mm

116.	(A)	9 m TC which of the following cann Auger electrons	or contri	Beta - particles
	(C)	Internal conversion electrons	(D)	Gamma rays
	` ,		1	
117.	A lon	g lived radionuclide with a daughte	er (T42 = 1	10 hours) reaches equilibrium in
• ,	(A)	About 3 hours	·	
	(B)	About 10 hours		
	(0)	About 40 hours		
	(D)	About 200 hours		
	•			
;			•	
118.	A pul	se height analyzer window width o	f 20% det	ects 99 m TC gamma rays with energies of
	(A)	140 keV only		
	(B)	Between 135 and 145 keV		A Company
	(C)	Between 120 and 140 keV		
		Between 126 and 154 keV		
119.		ma camera crystals		
*	(A)	are made of cesium iodide	1.	
	(B)	convert about 95% gamma ray en	ergy to 11g	gnt
	(C).	are generally 100 μ m thick		
		absorbs more than 90% of 140 ke	V photons	•
			-	
			•11	11 1 11 641 611 EVOEDE
120.			vill typica	lly have all of the following EXCEPT
	(A)	500,000 to 1 million counts		
	(B)	Matrix sizes of 1282		
	(C)	256 gray scale levels		
		Approximately 10 MB of data	•	
	•			
101	MP	oulse height analyser in NM imagir	na inavoca	AS.
121.	_		ig mcreas (B)	Scattered photons
	(A)	Detector efficiency Contrast to noise ratio	(D)	Count rate
		Courtisse of Horse 19710	(17)	,
(23	APMP/17
•				[T a

	(A)	Piezoelectric material	(B)	Backing block
	(C)	Accoustic absorbes		Display screen
•				
123.		mode ultrasound, the —————cation.	— of each e	cho is represented by the brightness at the
	(A)	Phase	(B)	Depth
	401	Amplitude	(D)	Attenuation
124.	Avera	age velocity of the blood flowing th	irough a v e	essel is
	(A)	1500 m/sec		1 m/sec
•	(C)	4500 m/sec	(D)	100 m/sec
,				· ·
125.	What	t bonding material is preferred to	opthalmic o	ocular scanning?
	(A)	Silica gel	(B)	Coconut oil
·	(C)	Water		Tears
	•			
100	A			
126.	Acou	stic impedance is given by	,	
	(C)	$Z = velocity \times density$	(B)	$Z = density \times viscosity$
	(C)	$Z = density \times temperature$	(D)	$Z = mass \times density$
		•		
127.	: Veloc	rity of sound in Lung	* .	
127.	(A)	1450 m/sec	(B)	1561 m/sec
	(C)	4080 m/sec	(B)	331 m/sec
	(0)			oo1 m/sec
÷				
128.	To pr	oduce longitudinal waves the qua	rtz should	be cut in such a way that it
	مترين	cuts X axis parallel to Z axis		
	(B)	cuts Y axis parallel to Z axis		
	(C)	cuts Z axis parallel to X axis		
٠	(D)	cuts both X and Z axis	-	
APM	[P/17		24	Z

Which of the following is not a major component of an ultrasound transducer?

122.

	(C)	Compression	(D)	Refraction
	7			
100	<i>a</i> n .		.114	
130.	The	typical range of frequency of medica $2-10~\mathrm{MHz}$		100 1000 kHz
•	(0)		(B)	
•	(C)	2 – 10 kHz	(D)	100 – 1000 MHz
٠	•	$\mathcal{F}(\mathbf{z}) = \{ \mathbf{z} \in \mathcal{F}(\mathbf{z}) \mid \mathbf{z} \in \mathcal{F}(\mathbf{z}) \}$		
131.	Trea	tment of soft small mucosal lesions	are treate	d with CO ₂ laser with a power of
•	400	5 – 10 W	(B)	2 – 5 mW
	(C)	15 – 20 mW	(D)	17 – 20 W
			•	
132.	Reso	nators used in lasers belong to clas	s of	
	(A)	Closed resonators	(B)	Cavity resonators
	(C)	Noncavity resonators		Open resonators
	. •			
٠				
133.		term turbid media will be referred	to the med	ium which has
	(A)	Only absorption		
	(B)	Only scattering		
		Both absorption and scattering	-	
	(D)	Only reflection	- *	
134.	Tho	pumping source in Nd : YAG laser	ie	
104.	(A)	Chemical	.5	Optical
	(C)	Electrical	(D)	Mechanical
	(0)	Dicevious	(2)	
·				
135.	Ìn w	hich region, laser emission occurs i	n Nd-YAG	laser
	(1)	IR region at 1.06 μm	(B)	Visible region
	(C)	UV region	(D)	RF region
		•		

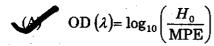
When an ultrasound beam passes through the interface of two dissimilar materials at an angle, a new angle of sound travel takes place in the second material due to

(B) Rarefraction

129.

(A)

Attenuation


136. Which type of laser viewing is most hazardous?

- (A) Viewing of a specularly reflected beam from a flat surface
- (B) Viewing of a specularly reflected beam from a curved surface
- (C) Extended source viewing of a diffused reflection

Intra beam viewing of a divert beam

137. Optical density $OD(\lambda)$ of protective filter is given by

Where H_0 is worst case exposure MPE maximum permissible exposure?

(B) OD $(\lambda) = \log_{10} H_0$

(C) OD $(\lambda) = \log_{10}(MPE)$

(D) OD $(\lambda) = \log_{10} \left(\frac{\text{MPE}}{H_0} \right)$

138. Which of the following colour signifies the highest temperature in pseudo colour coding of thermography?

(B) Red

(C) Brown

(D) Yellow

139. What does the acronym LASER stand for?

- (A) Light absorption by stimulated emission of radiation
- (B) Light attenuation by stimulated emission of radiation
- Light Amplification by stimulated emission of radiation
 - (D) Light alteration by stimulated emission of radiation

140. Wave length of He-Ne laser

- (A) 628.4
- (C) 514.7

(D) 1034.0

141. What are ND filters?

- (A) Nitro dioxan filters
- (B) Nitrogen deuteron filters
- (C) Non deposited filters
- Neutral density filters

142.	Supe	r conducting material used to produce	high r	nagnetic field in MRI is	
	4	Niobium – Titanium alloy		•	•
	(B)	Tungsten – Rhodium alloy	•		
	(C)	Rhodium – Titanium alloy		• :	
	(D)	Iridium – Titanium alloy	-		
				• •	
143.		duce hemolysis, the blood pump design	n shou	•	nises
	, (A)	Oxygen tension	(3)	turbulance	
	(C)	body temperature	(D)	continuous flow	
•					•
			. *		
144.	Duri	ng Myocardial infarction one can use			•
	(A)	Pacemaker	(B)	Heart lung machine	•
	(C)	Nerve simulator	(D)	Kidney machine	
	-				
145.	What	t is pacemaker?			‹
	(A)	Instrument to measure electrical act	ivity o	f heart	•
	(B)	Instrument to give electric voltage to	the h	eart in case of heart failure	•
	400	Instrument to maintain heart rhythr	n		e de la companya de
	(D)	Instrument to measure the blood flow	v from	the heart	. •
		•			
			•		
146.	Whic	h is the characteristic of peritoneal dia	lysis?	•	
	(A)	Blood is cleansed outside the body ar	ıd thei	n returned to the body	
	(B)	A hollow fibre dialyser is used			
	4	Uses the membrane layer of abdomir	al cav	rity to clean the blood	
	(D)	Blood is oxygenated outside the body	and t	hen returned to the body	
147.	In M	RI, which magnet widely is used to pro	duce l	nigh magnetic field in the o	der of 2 Tesla?
	(A)	Permanent magnet	(B)	Resistive magnet	
		Superconducting magnet	(D)	Inductive magnet	
	 /	~ abstraire magnes	رجب)		
<u>i</u>		95	7		APMP/17

140	The I	high DF navior denocition account in						
140.		high RF power deposition occurs in	٠					
	(A)	Spin-echo pulse sequence Inverse recovery pulse sequence						
•	(C)	Gradient echo pulse sequence	•					
	(D)	In all pulse sequences, power deposi	ition is	aavo				
	(D)	in an pulse sequences, power deposi	1110111 15	save				
	ē							
	Reco	rding of the peripheral nerves action p	otentia	al is called				
	(A)	Electro myography	(B)	Electro corticography				
•	C	Electro neutrography	(D)	Electro nephrography				
150.	Which isotope has the mean photon energy of 406 keV?							
	(A)	Pd – 103	(B)	Yb – 169				
	(C)	Tm - 170	(D)	Au – 198				
			•					
151.	Whic	ch is not the limitation of Point – A?						
·	(A) It does not relate to the anatomic structures							
	(B)	It is sensitive to the position of the ovoid sources and tandem position						
,	120	Point – A may be inside or outside the cervix						
	(D)							
	• •		6					
152.	The v	The value of reference isodose in the paris system is						
	(A)	the isodose covering the implanted v	olume	•				

- 85% of the basal dose
- (C) 95% of the prescribed dose
- (D) 95% of the basal dose

153. Positioning uncertainities in in-phantom measurement can be reduced by measuring at multiple chamber positions around the source

- (B) repetition of measurements at a specific distance from the source
- (C) use of larger distance from the source
- (D) use of larger volume chambers

154. Match the following:

- (a) Apparent activity
- (b) Equivalent mass of radium
- (c) Reference exposure rate
- (d) Exposure around the source
- (b) (c) (d) (a) 1 2 4 (A) 3 2 1 2 4 3 1 2 (D) 1 4
- 1. form and dimensions of the source
- 2. exposure at 1 m from the source
- 3. 0.5 mm platinium
- 4. measured at a distance of 1 m

155. Ir - 192 is made up of

- (A) 30% Ir and 70% Al
- (C) 70% Ir and 30% Al

- (B) 30% Ir and 70% Pt
- 70% Ir and 30% Pt

156. What is the half life of Ruthenium - 106?

- (A) 2.87 days
- (C) 28.7 years

- (3) 369 days
- (D) 36 years

157. Which report is used for the calculation of interstitial important treatment?

- (A) ICRU 55
- (C) ICRU 58

- (P) ICRU 56
 - (D) ICRU 60

158. What is the best detector to calibrate the brachytherapy sources?

(A) G.M Counter

- Well -type chamber
- (C) Semiconductor diode

(D) Scintillation detector

159. The recommended system for dose specification and reporting for intracavitary brachytherapy is

- (A) The Paris system
- (B) The Quimby system
- The ICRU system

 \leftarrow

(D) The Paterson - Parker system

160.	The 1	mass attenuation coefficient of photons in water		
	(A)	rises to a peak at about 3 eV		
	(B)	decreases continuously with energy below 25 meV		
•	10%	decreases to about 3 meV, then rises again		
·	(D)	increases continuously with energy below 25 meV		
161.		maximum number of photoelectrons produced in a photoelectric interaction by a single on with incident energy of $150~{ m keV}$ is		
•	J. J. J.	1		
•	(B)	5		
	(C)	10		
	(D)	Any number, as long as the sum of individual electron energies is equal to 150 keV		
162.	The v	volume of air in an ionization chamber		
,	(4)	Determines its sensitivity		
	(B)	Should be small if the photon intensity is low		
	(C)	Must be increased if high energy photons are to be detected		
	(D)	Both (B) and (C)		
163.	Rega	rding the guard electrode in an ion chamber		
	(A)	The guard ring electrode better defines the ion-collecting volume		
	(B)	The guard electrode minimizes polarity effect		
	(C)	The guard electrode maximizes polarity effect		
•		Both (A) and (B)		
164.	As per the Bragg-Gray cavity theory, the ratio of dose to the surroundings medium to dose to cavity air in given by (assume cavity size very small)			
	(A)	the ratio of mass absorption coefficient of medium to that of air for the photon crossing the cavity		
•	0	the ratio of mass stopping power of medium to that of air for the electron crossing the cavity		
	(C)	the ratio of electron density of medium to that of air		
	(D)	Roentgen to 'cGy' conversion factor for the medium		
APM	P/17	30 ←		

165.	Which of the following is not particulate radiation?							
	(A)	Alpha particles	(B)	Beta particles				
	(C)	Pi mesons		Gamma rays				
-								
166.	¹² B,	$_{6}^{12}\mathrm{C}$ and $_{7}^{12}\mathrm{N}$ are called	<u>, </u>					
	(A)	Isotopes	(B)	Isotones				
	VO P	Isobars	(D)	Isomers				
167.		vity of sample of radio-active life is	material decrea	ses to one eighth of original in 15 days. Its				
	(A)	10 days	(B)	15 days				
	(C)	3 days		5 days				
168.	In be	eta decay nucleon number						
	(A)	decreased by one	(B)	increased by one				
	(C)	increases by two		remains unchanged				
100	THE	time of unstable nuclei is	æ					
169.		Limited	-08	Unlimited				
	(A)	100 years	(D)	50 years				
	(C)	100 years	(2)					
170.	X ra	y exposure may be due to	<u>.</u>					
	(A) The direct beam from the X ray tube target							
	(B) Scatter radiation arising from the object in the direct beam							
	Both (A) and (B) (D) Both (A) and (B) plus residual radiation that exists for the first few minutes after the							
	(D)	Both (A) and (B) plus resid X-ray unit has been turned		at exists for the first few infinites after the				
171.		me required for one half of the	e radio active n	uclei to a pa rtic ular sample of radio active				
	(A)	The exposure time	(B)	A curie				
	(0)	A half life	(D)	A half value layer				

(

172.	The region near the end of a charged particle track in matter, in which the rate of energy loss is maximum is called							
	U.S	Bragg peak	(B)	Kerma peak				
	(C)	RBZ peak	(D)	LET peak				
173.	Acco radi	ording to AAPM guideline ation beam should be with	es (TG–142), the a	lignment between the light beam and the				
	(1)	± 2 mm	(B)	± 1 mm				
	(C)	$\pm 0.5 \text{ mm}$	(D)	± 1.5 mm				
174.	RSF	or PSF is the	•					
114.		TAR at Dmax	(D)	Southern The Comp.				
	(C)	PDD at Dmax	(B)	Scatter component of TAR				
	(-)	122 av Billar	(D)	Scatter component of TPR				
175.	PDD for photon beams in worth (or soft tissue) beyond the depth of maximum dose (Dmax).							
	VI)	decreases almost expone	entially with depth					
	(B)	increases almost expone		•				
	(C)	decreases almost linearly	y with depth					
	(D)	increases almost linearly	with depth					
	-		•					
176.	The most extensively studied and most frequently used TLD for clinical dosimetry is							
	(A)	lithium borate (Li ₂ B ₄ O ₇)					
	(B)	calcium fluoride (Caf ₂)						
	(C)	calcium sulphate (CaSO	4)					
	D	lithium fluoride (LiF)		·				
177.	According to TG-51 protocol for calibration of photon and electron beams, all depths must be scaled to water-equivalent depths using a scaling factor of							
	(A)	1 cm acrylic = 1.21 cm H						
,		1 cm acrylic = 1.12 cm H	C ₂ O	•				
	(C).	1 cm acrylic = 2.12 cm H	_					
	(D)	1 cm acrylic = 2.21 cm H	•					

178

Which one of the following is required for generating conformal treatment plan?

(A) GTV

(B) CTV

PTV

(D) Internal margin

179. In mega voltage photon beams, the Tissue Maximum Ratio (TMR) varies with all of the following factors, except:

(A) Field size

(B) Depth

SSD SSD

(D) Photon energy

180. Which of the following equation is used to compare various fractionation regimens?

(A) $1-(1-e^{-D/D_0})^n$

(B) $2.3 \times D_0$

(C) D_Q/D_O

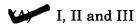
 $nd\left(1+\left[\frac{d}{\alpha+\beta}\right]\right)$

181. Radio protectors are

- (A) Chemical agents that enhance cell response to radiation
- (B) Drugs used to kill cancer cells
- Chemical agents that reduce cell response to radiation
- (D) Multileaf collimators used in linear accelerators

182. The monthly limit of 0.5 msv to the embryo is to limit / reduce the risk of

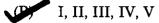
(A) mental retardation


- (B) carcinogenesis
- (C) congenital malformation
- all the above

183. Which is the most sensitive period for foetal abnormalities?

- (A) pre implantation
- 4-11 weeks of gestation
 - (C) 16-25 weeks of gestation
 - (D) more than 30 weeks

		•			
184.	Bergonie and tribondean defined radio sensitivity as				
	(I)	Mitotic activity			
	(II)	Level of differentiation			

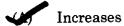

- (III) Directly proportional to a cell's reproductive activity and inversely proportional to a cell's degree of differentiation
- (IV) Directly proportional to a cell's degree of differentiation and inversely proportions to a cells reproductive activity

- (B) I and III only
- (C) IV only
- (D) All are correct

185. Order the following in correct sequence of producing biological damage by indirect action

- (I) Incident X-ray photon
- (II) Ion radical
- (III) Free radical
- (IV) Chemical changes
- (V) Biological changes
- (A) I, III, II, V, IV

- (C) I, III, II, IV, V
- (D) I, II, IV, III, V

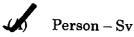

186. Which of the following is true?

- (I) Oxygen is an effective radio protector
- (II) Oxygen is an effective radiosensitive
- (III) Hypoxic cells are radiosensitive
- (IV) Hypoxic cells are radioresistant
- (A) I and III only
- (B) I, II and III

II and IV only

(D) IV only

- 187. The dose rate effect
 - (A) does not affect significantly the biologic effect of X-rays / Gamma rays
 - (B) is not important in Radiotherapy
 - involves in the reduction of the biologic effect of a given dose when the exposure time is increased
 - (D) is not due to sublethal damage repair
- 188. As the dose decreases, the RBE of a given radiation type


- (B) Decreases
- (C) Initially increases later decreases
- (D) Remains constant
- 189. The Relationship between OER and LET is as follows
 - (A) OER is a constant function of LET
 - (B) OER has a value of about 3 at high LET values and then decreases to zero at low LET values
 - OER has a value of about 3 at Low LET values and then decreases to unity at high values (approximately 200 keV / micrometer)
 - (D) OER is constant only for RBE
- 190. The effect of radiation on genetic disease is
 - (A) to introduce new type of disease
 - to increase the occurrence probability of naturally existing diseases
 - (C) to decrease the severity of the existing diseases
 - (D) Both (A) and (B)

191.	What is the principal reason for wearing a personnel monitoring dosimeter?
------	--

- (A) It signifies that the worker is authorized to work with radiation
- (B) The use of personnel monitoring dosimeters replaces the need for survey in the dept
- (C) The dosimetry will absorb the radiation and reduce the individual exposure

The result of personnel monitoring dosimeter comprise a permanent record of an individual's occupational radiation exposure history

192. The unit of the collective effective dose is

- (B) R
- (C) Gy
- (D) Sv


193. What is the radiation weighting factor for alpha radiation?

- (A) 1
- (B) 5
- (C) 10

194. Which of the following would most likely increase the spatial resolution of a screen/film combination?

- (A) High grid ratio
- (B) Slower film
- (C) Thicker screen

				37				Turn ov	-
· .			-	0.5	· .			APMP	/1 7
	(D)	2 mSv/year						•	
-		20 mSv/year	. •						
	(B)	20 mSv/month				•			
	(A)	20 mSv/day		•					
200.		t is the dose limit	or the occupa	ational as	s per tne	: 1CRF-00?	. •		
000	WL	t is the dose limit :	for the seem	etional a	northa	TORD SO			
				*			*.	•	
	(D)	mA – min/day					•		-
•	(C)	mA – sec/week							
	(B)	mA – hr/week							
	(1)	mA – min/week	•	. •					
99.	Diag	nostic Radiology w	orkload calc	ulate as			••		
	()	o obdoloma oood	(1.10)						
	(D)	Occasional occup	•		. "				
	(D)	Partial occupancy	_				•	,	
	(A) (B)	Full occupancy (٠.		· ·	
	(A)	No occupancy	nie occupancy	, Idoloi I	or corrid				
98.	The l	NCRP 49 defined t	he occupanci	z factor fo	or corrid	or			
			•		٠.			•	
	(C)	1/2		•					•
	(A)	0			(B) 1/	4			
197.	The	use factor (v) for t	he secondary	barrier	is		* * .		
						·			
	(D)	increases of radi	ation intensi	ty with i	ncreasin	g for differ	ent HVT's		
	(C)	increases of radi				•			
	(B)	decrease of radia							
	4	decrease of radia							
196.	Whic	ch is correct in the	. •			:			
						**			

What will be the geometrical penumbra for a source of 2 cm diameter at 80 cms SSD with

1.25 cm 2.0 cm

SDD of 40 cms?

1.0 cm

1.5 cm

(A)

(C)